skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murase, Kohta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Follow-up observations of neutrino events have been a promising method for identifying sources of very-high-energy cosmic rays. Neutrinos are unambiguous tracers of hadronic interactions and cosmic rays. On 2020 June 15, IceCube detected a neutrino event with an 82.8 per cent probability of being astrophysical in origin. To identify the astrophysical source of the neutrino, we used X-ray tiling observations to identify potential counterpart sources. We performed additional multiwavelength follow-up with NuSTAR and the VLA in order to construct a broadband spectral energy distribution (SED) of the most likely counterpart. From the SED, we calculate an estimate for the neutrinos we expect to detect from the source. While the source does not have a high predicted neutrino flux, it is still a plausible neutrino emitter. It is important to note that the other bright X-ray candidate sources consistent with the neutrino event are also radio-quiet active galactic nuclei. A statistical analysis shows that 1RXS J093117.6+033146 is the most likely counterpart (87.5 per cent) if the neutrino is cosmic in origin and if it is among X-ray detectable sources. This result adds to previous results suggesting a connection between radio-quiet AGN and IceCube neutrino events. 
    more » « less
    Free, publicly-accessible full text available July 7, 2026
  2. Recent observations of high-energy neutrinos from active galactic nuclei (AGN), NGC 1068 and TXS 0506 + 056 , suggest that cosmic rays (CRs) are accelerated in the vicinity of the central supermassive black hole and high-energy protons and electrons can cool efficiently via interactions with ambient photons and gas. The dark matter density may be significantly enhanced near the black hole, and CRs could lose energies predominantly due to scatterings with the ambient dark matter particles. We propose CR cooling in AGN as a new probe of dark matter-proton and dark matter-electron scatterings. Under plausible astrophysical assumptions, our constraints on sub-GeV dark matter can be the strongest derived to date. Some of the parameter space favored by thermal light dark matter models might already be probed with current multimessenger observations of AGN. Published by the American Physical Society2024 
    more » « less
  3. Multiwavelength observations have revealed that dense, confined circumstellar material (CCSM) commonly exists in the vicinity of supernova (SN) progenitors, suggesting enhanced mass losses years to centuries before their core collapse. Interacting SNe, which are powered or aided by interaction with the CCSM, are considered to be promising high-energy multimessenger transient sources. We present detailed results of broadband electromagnetic emission, following the time-dependent model proposed in the previous work on high-energy SN neutrinos [K. Murase, New prospects for detecting high-energy neutrinos from nearby supernovae, ]. We investigate electromagnetic cascades in the presence of Coulomb losses, including inverse-Compton and synchrotron components that significantly contribute to MeV and high-frequency radio bands, respectively. We also discuss the application to SN 2023ixf. Published by the American Physical Society2024 
    more » « less
  4. Abstract The detection of high-energy neutrino signals from the nearby Seyfert galaxy NGC 1068 provides us with an opportunity to study nonthermal processes near the center of supermassive black holes. Using the IceCube and latest Fermi-LAT data, we present general multimessenger constraints on the energetics of cosmic rays and the size of neutrino emission regions. In the photohadronic scenario, the required cosmic-ray luminosity should be larger than ∼1%−10% of the Eddington luminosity and the emission radius should be ≲15RSin low-βplasma and ≲3RSin high-βplasma. The leptonic scenario overshoots the NuSTAR or Fermi-LAT data for any emission radii we consider, and the required gamma-ray luminosity is much larger than the Eddington luminosity. The beta-decay scenario also violates not only the energetics requirement but also gamma-ray constraints, especially when the Bethe–Heitler and photomeson production processes are consistently considered. Our results rule out the leptonic and beta-decay scenarios in a nearly model-independent manner and support hadronic mechanisms in magnetically powered coronae if NGC 1068 is a source of high-energy neutrinos. 
    more » « less
  5. Abstract TheFermiLarge Area Telescope (Fermi-LAT) has been widely used to search for Weakly Interacting Massive Particle (WIMP) dark matter signals due to its unparalleled sensitivity in the GeV energy band. The leading constraints for WIMP byFermi-LAT are obtained from the analyses of dwarf spheroidal galaxies within the Local Group, which are compelling targets for dark matter searches due to their relatively low astrophysical backgrounds and high dark matter content. In the meantime, the search for heavy dark matter with masses above TeV remains a compelling and relatively unexplored frontier. In this study, we utilize 14-yearFermi-LAT data to search for dark matter annihilation and decay signals in 8 classical dwarf spheroidal galaxies within the Local Group. We consider secondary emission caused by electromagnetic cascades of prompt gamma rays and electrons/positrons from dark matter, which enables us to extend the search withFermi-LAT to heavier dark matter cases. We also update the dark matter subhalo model with informative priors respecting the fact that they reside in subhalos of our Milky Way halo aiming to enhance the robustness of our results. We place constraints on dark matter annihilation cross section and decay lifetime for dark matter masses ranging from 103GeV to 1011GeV, where our limits are more stringent than those obtained by many other high-energy gamma-ray instruments. 
    more » « less
  6. Abstract We present the results from our extensive hard-to-soft X-ray (NuSTAR, Swift-XRT, XMM-Newton, Chandra) and meter-to-millimeter-wave radio (Giant Metrewave Radio Telescope, Very Large Array, NOEMA) monitoring campaign of the very nearby (d = 6.9 Mpc) Type II supernova (SN) 2023ixf spanning ≈4–165 days post-explosion. This unprecedented data set enables inferences on the explosion’s circumstellar medium (CSM) density and geometry. In particular, we find that the luminous X-ray emission is well modeled by thermal free–free radiation from the forward shock with rapidly decreasing photoelectric absorption with time. The radio spectrum is dominated by synchrotron radiation from the same shock. Similar to the X-rays, the level of free–free absorption affecting the radio spectrum rapidly decreases with time as a consequence of the shock propagation into the dense CSM. While the X-ray and the radio modeling independently support the presence of a dense medium corresponding to an effective mass-loss rate M ̇ 1 0 4 M yr 1 atR = (0.4–14) × 1015cm (forvw = 25 km s−1), our study points at a complex CSM density structure with asymmetries and clumps. The inferred densities are ≈10–100 times those of typical red supergiants, indicating an extreme mass-loss phase of the progenitor in the ≈200 yr preceding core collapse, which leads to the most X-ray luminous Type II SN and the one with the most delayed emergence of radio emission. These results add to the picture of the complex mass-loss history of massive stars on the verge of collapse and demonstrate the need for panchromatic campaigns to fully map their intricate environments. 
    more » « less
    Free, publicly-accessible full text available May 14, 2026